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Abstract. Snow is a critical component of the Arctic sea ice system. With its low thermal conductivity and high 8 

albedo, snow moderates energy transfer between the atmosphere and ocean during both winter and summer, thereby 9 

playing a significant role in determining the magnitude, timing, and variability of sea ice growth and melt. The depth 10 

of snow on Arctic sea ice is highly variable in space and time, and accurate measurements of snow depth and 11 

variability are central to improving our basic understanding, model representation, and remote sensing observations 12 

of the Arctic system. Our ability to collect those measurements has hitherto been limited by the high cost and large 13 

size of existing autonomous snow measurement systems. We designed a new system called SnoTATOS (the Snow 14 

Thickness and Temperature Observation System) to address this gap. SnoTATOS is a radio-networked, distributed 15 

snow depth observation system that is 95% less expensive and 93% lighter than existing systems. In this manuscript, 16 

we describe the technical specifications of the system and present results from a case study deployment of four 17 

SnoTATOS networks (each with ten observing nodes) in the Lincoln Sea between April 2024 and January 2025. 18 

The study demonstrates SnoTATOS’ utility in collecting distributed, in situ snow depth, accumulation, and surface 19 

melt data. While surface melt varied within each network by up to 38%, mean surface melt between networks varied 20 

by only up to 9%. Similarly, whereas initial snow depth varied by up to 42% within each network, a comparison of 21 

mean initial snow depth between networks showed a maximum difference of only 26%. This indicates that floe-22 

scale measurements made using SnoTATOS provide more representative data for regional intercomparisons than 23 

existing single station systems. We conclude by recommending further research to determine the optimal number 24 

and arrangement of autonomous stations needed to capture the variability of snow depth on Arctic sea ice. 25 

1 Introduction 26 

September Arctic sea ice area has diminished by ~50% since satellite observations began in 1979 (Meier et al., 27 

2023; Onarheim et al., 2018; Peng and Meier, 2018). The remainder is predominantly thin first- and second-year ice 28 

(FYI, SYI) (Kwok, 2018). The Arctic Ocean may experience ice-free summers within the next decade (Jahn et al., 29 

2024). The thinning and loss of Arctic sea ice has increased Arctic coastal erosion (Barnhart et al., 2014; Eicken and 30 

Mahoney, 2015), diminished habitat (Laidre et al., 2015; Post et al., 2013), impeded hunting, fishing, and 31 

transportation over sea ice, and created new opportunities and uncertainties for shipping, tourism, military activity, 32 

and geopolitical conflict in the Arctic (Backus, 2012; Bystrowska, 2019; Carman, 2002). Understanding the Arctic 33 

ice pack is more important than ever. At the same time, rapidly changing conditions, in addition to baseline spatial 34 
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and temporal variability, present considerable challenges for our efforts to observe, understand, and predict changes 35 

in this environment. 36 

Our fundamental understanding and model representations of the Arctic sea ice system are limited by the 37 

spatial and temporal resolution, consistency, coverage, representativeness, and scalability of available snow 38 

observations. Zampieri et al. (2024) and Clemens-Sewall et al. (2024b) both found that neglecting sub-meter to 39 

meter-scale snow depth variability results in a 10% underestimation of modeled conductive heat flux through the 40 

Arctic sea ice cover during winter, yielding a directly proportional underestimation of ice growth. Snow also 41 

influences the timing of melt onset (Holland et al., 2021), and the formation and distribution of melt ponds 42 

(Polashenski et al., 2012), both of which impact the magnitude and spatial variability of sea ice melt. Clemens-43 

Sewall et al. (2024b) and Holland et al. (2021) conclude that more observations of the spatial heterogeneity of snow 44 

depth are needed to improve model representations of sea ice conditions. Further, Gerland et al. (2019) identified the 45 

sparsity of in situ measurements of snow depth as an essential gap in our understanding of Arctic sea ice, and in a 46 

review of snow in the contemporary sea ice system, Webster et al. (2018) stated that “Major questions remain … as 47 

to the exact role of snow, how it varies regionally and seasonally, how snow conditions on sea ice are changing and 48 

what effects these changes have on the atmosphere–sea ice–ocean interactions,” and that, “first and foremost, our 49 

limited understanding stems from the complexity of the snow–sea ice systems and the scarcity of observations.” In 50 

short, we need high-spatial-resolution observations of snow depth to constrain spatial variability, validate remote 51 

sensing observations, advance model physics, and maintain an observational record of snow depth in the Arctic. 52 

Remote sensing observations give broad and consistent geographical coverage, but do not afford the 53 

necessary spatial resolution or measurement precision (Meier and Markus, 2015; Webster et al., 2018). Crewed, in 54 

situ drift and station experiments – e.g., the 1997–1998 SHEBA expedition (Perovich et al., 1999, 2003; Sturm et 55 

al., 2002), the 2015–2016 N-ICE experiment (Granskog et al., 2018; Merkouriadi et al., 2017; Rösel et al., 2018), 56 

the 2018–2019 MOSAiC expedition (Itkin et al., 2023; Nicolaus et al., 2022; Raphael et al., 2022), and the long-57 

running Russian drifting ice station program  (Colony et al., 1998) – are important, but only partial, solutions. They 58 

provide opportunities to densely sample sea ice and snow conditions, usually alongside a rich suite of atmosphere, 59 

ocean, and contextual information. However, each expedition offers only a snapshot in space and time. 60 

Autonomous in situ instruments can provide wide spatial coverage and high temporal resolution, and 61 

several autonomous systems exist that offer precise, in situ measurements with selectable sampling frequency and 62 

up to 1–2 year endurance (Liao et al., 2019; Nicolaus et al., 2021; Planck et al., 2019). These systems are regularly 63 

deployed in the Arctic, but are expensive, heavy, and difficult to transport to and in the field (Table 1). This has 64 

historically limited their use to one to two instruments installed per floe, and few (<10) per region, the rare 65 

exceptions being major expeditions like N-ICE (Itkin et al., 2017; Nicolaus et al., 2021) and MOSAiC (Nicolaus et 66 

al., 2022; Rabe et al., 2024). Even on such major campaigns, relatively few units have been deployed on a single 67 

floe. These limited point measurements are usually taken as representative local snow depths. However, snow depth 68 

on Arctic sea ice can vary by 2 orders of magnitude over decimeter to kilometer length-scales due to topographical 69 

features, surface conditions of the underlying ice and snow, and ice age (and resultant accumulation time), among 70 
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other factors (Clemens-Sewall et al., 2024a; Iacozza and Barber, 1999). A point measurement is unlikely to capture 71 

the mean (and, by definition, cannot capture the variance) of snow depth in complex local snow fields. 72 

We need a new snow sensing technology that will improve the spatial density of Arctic snow depth 73 

measurements. The system must be inexpensive, easy to transport, use, and install, and have similar measurement 74 

precision and endurance to existing systems. We have designed, built, tested, and deployed the Snow Thickness and 75 

Temperature Observation System (SnoTATOS) to meet this need (Table 1). SnoTATOS is an autonomous, radio-76 

networked, distributed snow depth measurement system that will accurately observe the mean and variance of snow 77 

depth on Arctic sea ice at meter to regional spatial scales. Throughout the design process, we focused on 78 

affordability; ease of manufacturing, transport, use, and deployment; and matching or exceeding existing 79 

measurement standards. Our ultimate goal is to reduce or eliminate barriers to deploying the system in large 80 

numbers across the Arctic.  81 

In this manuscript, we describe the characteristics of the SnoTATOS system, share bench-testing 82 

performance evaluations, and present results from SnoTATOS prototype networks deployed in the Lincoln Sea in 83 

May 2024. 84 

 85 

Table 1: Specifications of several polar snow depth measurement systems (all specifications are per unit/station) 86 

System Approximate 

cost 

Weight Size Time to 

deploy 

Endurance Measurement 

precisiona 

MetOcean 

Snow Buoy 

$9,400 USD 40 kg 2.55 m x 1 

m x 1 m 

30–40 

min 

12–18 months ± 1 mm 

SAMS 

SIMBA buoy 

$10,000 USD 25 kg ~0.55 m x 

0.30 m x 

0.20 m  

20–30 

min 

> 12 months ± 2 cm 

SIMB3 $18,000 USD 36 kg 4.87 m x 

0.25 m x 

0.11 m 

20–30 

min 

24 months ± 1 mm 

SnoTATOS $500 USDb 1.8 kg 2.44 m x 

0.15 m x 

0.1 m 

<10 min 4.5 yearsc ± 1 mm 

aThis value specifies the instrument’s stated measurement precision, not the accuracy of the snow depth retrieval. 87 
The precision of the ultrasonic rangefinders is ± 1 mm, while accuracy depends on temperature compensation, 88 
ice/snow surface conditions, sensor icing, etc. The precision of digital temperature chain instruments (e.g., the 89 
SIMBA) is ± 2 cm (the separation between any two temperature sensors in the chain), while the accuracy depends 90 
on the thermal characteristics of the snow, ice, and atmosphere, which affect the feasibility of determining the 91 
interfaces between the three media. 92 
bCost of components only (not including manufacturing and assembly) is approximately $200. 93 
cThis is a nominal endurance based on power consumption measurements in a laboratory setting. We expect the 94 
effective endurance to be reduced by low temperatures and any radio communication reattempts. 95 
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2 System description 96 

2.1 Overview of SnoTATOS 97 

A standard SnoTATOS network consists of several autonomous snow measurement stations (hereafter called 98 

“nodes”) linked to a central server by a LoRa radio network (Augustin et al., 2016) (Fig. 1). The number of nodes in 99 

a network is theoretically unlimited. Each node is equipped with an ultrasonic rangefinder (HRXL-MaxSonar-WR 100 

Datasheet, 2024) for monitoring the snow or ice surface position; additional sensors (e.g. temperature sensors) can 101 

be added with minimal engineering effort. The network is synchronized such that all nodes simultaneously collect 102 

samples and transmit their data back to the server at regular intervals, with random transmission jitter introduced to 103 

reduce packet collisions. The sampling frequency is programmable with a typical interval set at four hours. We 104 

designed the server to integrate into a SIMB3 ice mass balance buoy (Planck et al., 2019, p.201), thereby taking 105 

advantage of the SIMB3’s existing Iridium telemetry. The server can also operate in a freestanding mode, either 106 

transmitting data to a landside server using satellite telemetry or storing data locally on an SD card. In the following 107 

sections, we will describe the node and server electronics, physical characteristics, radio network, and operating 108 

software. 109 

 110 

 111 
Figure 1: Diagram of a SnoTATOS network. SnoTATOS data is collected at each node in a distributed 112 
network, and transferred to the server via radio, either directly (in the hub-and-spoke network model) or via 113 
relay through peers (in the mesh network model). The server collects all SnoTATOS data and relays it to the 114 
SIMB3, which handles satellite telemetry to a land-side server. 115 

2.2 Node overview and physical characteristics 116 

A SnoTATOS node consists of a MaxBotix 7389-200 ultrasonic surface rangefinder; a microcontroller that manages 117 

sampling, datalogging, and radio communications with the server; a nickel-metal hydride (NiMH) battery power-118 
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bank; and ancillary electronics. Figure A1 shows a system block diagram. The electronics are housed in a watertight 119 

plastic enclosure (Fig. 2). The rangefinder is mounted directly to a sidewall of the enclosure (Fig. 2). The resulting 120 

sensing unit is 0.08 m x 0.19 m x 0.09 cm and weighs approximately 0.62 kg. The sensing unit is mounted on a 2.44 121 

m x 0.038 m x 0.038 m (8 feet x 1.5 inches x 1.5 inches) wooden stake (Fig. 3). The long edges of the stake are 122 

filleted so that the stake fits snugly in a standard 5 cm (2 inch) diameter ice auger hole. The total weight of an 123 

individual node is approximately 1.80 kg, representing a 96% mass reduction compared to the MetOcean Snow 124 

Buoy. The stake length maximizes the range of observable snow depths while conforming to less-than-truckload 125 

(LTL) and passenger aircraft lower deck freight limitations. 126 

 127 

 128 
Figure 2: SnoTATOS node sensing unit. Panel (a) is a photograph of a SnoTATOS sensing unit, showing 129 
the ABS plastic enclosure and ultrasonic surface rangefinder mounted in the sidewall of the enclosure. 130 
Panel (b) is a top down photograph of the sensing unit with lid removed, showing the PCB, rangefinder 131 
wiring harness, and battery bank. Panel (c) shows an annotated digital model of a node PCB with key 132 
features identified. 133 

 134 

The Maxbotix ultrasonic rangefinder detection cone has an approximately 40º aperture angle, so spurious 135 

detection of the mounting stake was a significant design concern. We conducted a series of experiments to 136 

determine the optimal sensor look-angle (𝜃) and standoff of the sensor from the mounting stake. We determined that 137 

a sensor standoff between 5–40 cm and 5° < 𝜃 ≤ 35° yielded the lowest error rate (between 4–6%). Taking this into 138 

account, we mounted the enclosure on an inclined face of the stake, with 𝜃 = 8° off-nadir and a standoff of 0.05 m. 139 

The rangefinder’s projected beam has a roughly circular footprint with a diameter of approximately 0.60 m at typical 140 

ranging distances. 141 

During installation, a 5 cm (2 inch) diameter hole is drilled into the ice and the stake is inserted until a 142 

depth stop is at the ice surface, then allowed to freeze in. The initial snow depth and distance between the snow 143 
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surface and rangefinder are then measured. The rangefinder is thus situated at a known height (𝑍p) above the ice 144 

surface, and subsequent snow depth (ℎs) can be determined from the range value (𝑅s) as ℎs = 𝑍p − 𝑅s. The 145 

installation process requires ~2 to 10 minutes per node depending on conditions, reducing deployment time by at 146 

least 50% compared to other systems. 147 

 148 

 149 
Figure 3: Schematic diagram of a SnoTATOS node. Snow depth (ℎs) can be calculated by subtracting the 150 
range reading (𝑅s) from the rangefinder offset (𝑍p). Through experimental measurements we have 151 

determined that the range reading does not vary appreciably for 5° < 𝜃 ≤ 35°, so we do not perform a 152 
trigonometric correction for 𝑅s. 153 

2.3 Sensing unit electronics 154 

Here, we summarize the selection of key components in the sensing unit and their notable features. The sensing unit 155 

is built around an ATmega4808 AVR microcontroller unit (MCU). The ATmega4808 is an 8-bit reduced instruction 156 

set computer (RISC) (Patterson, 1985) with 48 KB of program memory and 6 KB of RAM. The chip is equipped 157 

with an onboard 10-bit analog-to-digital converter (ADC). We added an external crystal oscillator which drives a 158 

one-second precision system clock, enabling an ultra-low-power standby mode with programmable, alarmed 159 

wakeups. In standby mode, unused peripheral devices are depowered and the MCU sleeps until woken, either by a 160 
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programmed alarm or by an external interrupt on a general-purpose input/output (GPIO) pin. We selected the 161 

ATmega4808 for its low power consumption, affordability, and programming simplicity. The MCU has an operating 162 

input voltage range of 1.8–5.5 V, however, logic levels and GPIO output voltage are dependent on MCU input 163 

voltage. We added a low-quiescent-current (0.3 µA) buck-boost converter with a 1.8–5.5 V input voltage range and 164 

a fixed 3.3 V output. This achieves 3.3 V board logic and GPIO output voltage while maintaining flexibility in 165 

power supply voltage. 166 

We selected the HopeRF RFM95-915 LoRa module for radio communications. The module operates at 915 167 

MHz with a maximum output power of 20 dBm. The 902–928 MHz frequency range is a license-free Industrial, 168 

Scientific, and Medical (ISM) radio band in the Americas (including the United States, Greenland, Canada, and 169 

South and Central America). The unit is directly exchangeable for the RFM95-868, which operates at 868 MHz, 170 

within the European ISM band (including Russia). These two options ensure system compliance for any Arctic 171 

deployment. Either option is suitable for deployments in international waters. The authors are not aware of any 172 

regulations restricting radio frequency use in Antarctica. 173 

Most snow accumulation observation systems use one of several models of the Maxbotix ultrasonic 174 

rangefinder. Maxbotix offers many variations of their basic rangefinder, including snow-specific models. We chose 175 

to use their general-purpose model with the compact horn option (MB7389-200). 176 

We use NiMH batteries for the power bank due to their improved cold-weather performance vs. alkaline 177 

batteries (Fetcenko et al., 2007) and less stringent shipping regulations compared to lithium-ion batteries. We used 178 

Tenergy Power D-cells, rated to 10,000 mAh per cell. Each node has a power bank of 4-cells, arranged in two 179 

parallel pairs of two cells in series. A NiMH battery has a functional voltage of ~1.2 V for most of its discharge life 180 

in normal conditions, yielding a nominal supply voltage 𝑉n = 2.4 V and a nominal energy capacity of 24 Wh. 181 

We designed a custom printed circuit board (PCB) to integrate all components (Fig. 2). The PCB is a two-182 

layer board designed on a 1.6 mm FR-4 substrate. We designed a monopole PCB trace radio antenna adapted from a 183 

Texas Instruments design (Wallace, 2013). 184 

2.4 Server electronics 185 

The SnoTATOS server uses the same MCU, radio module, and antenna design as the node sensing units. However, 186 

the server is not equipped with sensors. Further, the server is designed to use the SIMB3’s 18 V power supply. We 187 

used a Pololu D24V5F5 buck converter to step the 18 V SIMB3 supply down to 5V. We integrated all components 188 

using a custom PCB similar to the node PCB. 189 

2.5 Software 190 

2.5.1 Node operations 191 

The system software is written in C and C++, using the Arduino hardware abstraction layer (HAL) to interface with 192 

the MCU. The nodes follow the high-level logical flow shown in Fig. 4. When powered on, the node enters the 193 

Setup function, where it initializes the memory state, system clock, radio module, and rangefinder, and sets 194 

input/output pin states. The node then moves into the Loop function, where it will remain for its lifetime unless it is 195 
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power-cycled. In Loop, the node first samples the rangefinder to obtain a snow depth reading at “wake-up” time. 196 

The node then checks its synchronization state. If it is not synced with the server (as is the case upon initial power-197 

up), it will wait at this stage until it receives a synchronization broadcast message from the server. After 198 

synchronizing with the server, the node immediately sets an RTC alarm to wake after the appropriate elapsed time 199 

(the sampling interval). The node then reads its battery voltage, packs this and the rangefinder data into a buffer, and 200 

attempts to transmit the buffer to the server. If the transmission is successful and acknowledged by the server, the 201 

node depowers all unnecessary peripherals and enters a deep sleep state until triggered by the RTC alarm. However, 202 

if more than three unsuccessful/unacknowledged transmissions occur, the node returns to an unsynced state and 203 

remains awake until resyncing with the server. We implemented this failsafe to prevent network failure in case of 204 

clock drift or other errors resulting in network desynchronization over the course of the deployment. 205 

 206 

 207 
Figure 4: Node flow diagram. The high-level logic of a SnoTATOS node equipped with only a snow surface 208 
rangefinder is shown. Additional sensors may be added, which would be read at the same stage as the surface 209 
rangefinder. 210 

2.5.2 Radio communications 211 

The radio network is implemented using LoRa, a long-range, low-power radio technology (Augustin et al., 2016). 212 

Nominal LoRa radio ranges are up to 10–20 km with clear line of sight. The RFM95 LoRa transceiver manages the 213 

physical layer of the Open Systems Interconnection (OSI) network model (Zimmermann, 1980), handling bitwise 214 

data encoding, chirp spread spectrum (CSS) modulation, and physical transmission of the data. We used the open 215 

source RadioLib library (RadioLib - Arduino Reference, 2024) to implement the data link layer atop the physical 216 

layer; this handles data-packet to dataframe formatting and the digital interface between the MCU and the RFM95 217 

module. 218 

We developed software to implement the Network, Transport, Session, and Presentation layers of the OSI 219 

model. These handle data packet assembly, addressed packet transmission, packet receipt acknowledgment, failed 220 

transmission reattempts, packet transmission timeouts, and network collision handling. These are well established 221 
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general concepts in computer networking, which we implemented in a lightweight C++ library for handling small-222 

packet data transmission in an addressed, reliable network, with options for either hub-and-spoke or mesh network 223 

topologies. We gave particular attention to robust packet acknowledgement and secure server–node transactions, 224 

since this reduces network airtime for each node (by preventing unnecessary reattempts), in turn reducing potential 225 

node–node collisions. This results in a more reliable network, with less power expended on multiple transmission 226 

reattempts and unnecessary node waketime. 227 

The system’s standard network topology is the hub-and-spoke model, where individual nodes (the 228 

“spokes”) communicate directly with the server (the “hub”). This network topology is simple to implement and is 229 

also typically the least power-intensive network model. In this topology, network sizes are limited by the 10–20 km 230 

nominal LoRa range given line-of-sight between node and server. Range and reliability may be impeded in complex 231 

terrain, such as in highly deformed sea ice where direct line-of-sight between the server and each node may not be 232 

possible. We implemented an alternative mesh network topology to address this limitation. We use a naive flooding 233 

protocol (Zahn et al., 2009) with acknowledged packet receipt. A detailed description of the node-side mesh network 234 

implementation is included in Appendix B.  235 

2.5.3 Server operations 236 

The server follows the high-level logical flow shown in Fig. 5. When powered on, the server enters the Setup 237 

function, where it initializes its memory state, system clock, radio module, SIMB3 communications (if integrated 238 

into SIMB3), and sets input/output pin states. The server then moves into the Loop function, where it will remain 239 

for its lifetime unless it is power-cycled. In Loop, the server first sets a “bedtime” alarm, which will trigger when 240 

the server wake-period ends and it is time for the server to enter standby mode. It then broadcasts a sync message to 241 

the network, and proceeds to loop through two stages until the bedtime alarm triggers.  242 

In the first stage, the server checks to see if it has received a message from a node. If it has, it writes the 243 

node’s data to the appropriate location in its memory buffer for later transfer to SIMB3, then returns an ACK 244 

message to the originating node. In the standard hub-and-spoke topology, this is a unicast message directly to the 245 

originating node. A description of the server-side mesh network operations is included in the Appendix B. 246 

In the second stage, the server checks to see if the SIMB3 has requested the data from the server. If the 247 

SIMB3 has requested data, the server passes the buffer to the SIMB3, then resets the buffer to default values. Under 248 

normal conditions, all nodes are expected to have transmitted their data to the server before the SIMB3 requests 249 

data. The server will not wait for all nodes to transmit before passing data to the SIMB3; this prevents the server 250 

from hanging if a node fails to transmit or is otherwise inoperable. The server continues checking these two 251 

conditions (“Received data from a node?” and “SIMB3 requested data?”) until it is time to sleep, at which point it 252 

will set an alarm corresponding to the sampling interval and enter standby mode. Despite the server checking the 253 

“SIMB3 requested data?” condition multiple times, the SIMB3 is expected to request data only once during a given 254 

sampling interval. However, due to communications protocols between the SIMB3 and the server, it is beneficial to 255 

respond to any hypothetical SIMB3 request as legitimate, even if the server responds with default buffer values. 256 
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 257 
Figure 5: Server flow diagram. The high-level logic of a SnoTATOS server that is integrated into a SIMB3 258 
buoy is shown. The server may also operate in standalone mode. In this case, the SIMB3 communications 259 
stages would be eliminated, and an Iridium telemetry stage would be added. 260 

2.6 SIMB3 integration 261 

We used the I2C (Inter-Integrated Circuit) protocol to establish communications and data transfer between the server 262 

and the SIMB3. I2C is a serial communication protocol that allows a controller device (in this case, the SIMB3) to 263 

query packetized data from an addressed target device (the server). In addition to the standard I2C SDA (serial data) 264 

and SCL (serial clock) lines, we added a low-active chip select line (CS). The server and SIMB3 share a common 265 

ground line. When the SIMB3 is preparing to retrieve data from the server, it pulls the CS line to ground. The server 266 

then prepares the data buffer for the SIMB3 and stands by until the SIMB3 retrieves the data through an I2C request 267 

or the transaction has timed out. The SIMB3 adds the retrieved data to its existing Iridium message and transmits it 268 

to a land-side server. 269 

2.7 Bench tested power characteristics 270 

We performed laboratory tests to estimate the power characteristics of the sensing unit using the shunt-resistor 271 

method and linear circuit analysis. By measuring the voltage drop, 𝑉𝑟, across a resistor with a known and low value, 272 

𝑅, one can use Ohm’s law (𝑉r = 𝐼𝑅) to determine the corresponding circuit current, 𝑰. With a known supply voltage, 273 

𝑉s, one can then use the power law (𝑃 = 𝐼𝑉) to determine the circuit power demand, 𝑷. We used an oscilloscope to 274 

make time-resolved voltage measurements through all phases of the node’s operating cycle, then converted these 275 

measurements to time-resolved power (Fig. A2).  276 

We tested over a range of supply voltages that the node might typically experience, from 𝑉s = 1.6 V (below 277 

the buck/boost converter threshold voltage of 1.8 V) to 𝑉s = 3.3 V (above the nominal battery bank supply voltage, 278 

𝑉n = 2.4 V). We determined that at 𝑉s = 𝑉n = 2.4 V, the average circuit current across all phases of the typical 4-279 
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hour duty cycle is 254 µA, and the average power demand is 610 µW. With a 24 Wh power bank (two 10,000 mAh 280 

D-cell batteries), each node has an estimated endurance of ~1,639 days, or ~4.5 years (far longer than the lifetime of 281 

any sea ice on which it is likely to be installed). However, this does not account for battery efficiency losses due to 282 

cold temperatures, nor atypical conditions such as radio transmission retries. 283 

We conducted similar power tests for the server, finding an average current draw of 1.03 mA at 𝑉s = 18 V, 284 

yielding an average power demand of 18.54 mW. This is approximately 30% of the SIMB3’s power budget (Planck, 285 

2021), yielding an estimated endurance of approximately 560 days, or slightly more than 1.5 years. Operating in 286 

standalone mode, the power supply can be reduced to 𝑉s = 3.4 V, increasing efficiency and reducing average power 287 

demand to approximately 2,500 µW. This produces a nominal endurance of 4.4 years with a 96 Wh battery bank 288 

(eight 10,000 mAh D-cell batteries). 289 

3 Case study, Lincoln Sea, April 2024–January 2025 290 

We deployed four SnoTATOS networks in the Lincoln Sea in late April and early May, 2024, during the NASA 291 

ARCSIX project (McNamee, 2024) (Fig. 6). Each network consisted of ten nodes and a server integrated into a 292 

SIMB3 buoy. We deployed the networks in multiyear ice just before the onset of surface melt. We placed the nodes 293 

randomly between 25 and 200 m from each buoy, with clear line-of-sight to the buoy. We measured initial snow 294 

depth at each node, and ice thickness and snow depth at each SIMB3. As of 3 January, 2025, three networks (2024L, 295 

2024O, and 2024R) were no longer reporting. The failure of 2024O is consistent with an I2C communications 296 

failure between the server and SIMB3 MCU. The steady attrition of nodes and their location in a shear band suggest 297 

that networks 2024L and 2024R were destroyed by ice dynamics. 2024P continues to report, with four nodes 298 

surviving; the rest were likely destroyed by ice dynamics. We will now describe the general results from these 299 

installations. We include data from network 2024O in summary visualizations for completeness, however, we do not 300 

consider these data in our analysis. 301 
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 302 
Figure 6: Drift tracks of four SnoTATOS networks deployed in the Lincoln Sea in April and May, 303 
2024. 304 

 305 
The mean installation conditions for the four networks are given in Table 2. The time series of snow depth 306 

and surface melt for all nodes at each network is shown in Fig. 7. We observed between 0.05 and 0.10 m of snow 307 

accumulation at each network between installation in late April and late May. Surface melt in the region began in 308 

late May, after which snow depth decreased steadily at all nodes, reaching 0 m between 12 June and 8 July. On 309 

average, snow persisted longest at network P, which also had the deepest initial snow cover (Fig. 8). Ice surface melt 310 

then commenced, continuing until early August (Fig. 9). 311 

https://doi.org/10.5194/egusphere-2025-187
Preprint. Discussion started: 10 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 13 

 312 
Figure 7: Time series scatterplots of surface position at four SnoTATOS networks. Time series data of 313 
surface position is shown for each node at the four ARCSIX SnoTATOS networks. “Surface position” is the 314 
position of the surface sensed by the ultrasonic rangefinder (air–snow or air–ice interface) relative to the 315 
initial snow–ice interface (surface position 0). Each node initially demonstrates a positive surface position 316 
value, indicating a positive snow depth. Snow depth increases until around early June at all nodes. Snow melt 317 
then begins around mid-June, continuing at each node until the surface position reaches 0, indicating 318 
complete snow melt and the onset of ice surface melt. Ice surface melt continues until early August. From 319 
that point on, any positive change in surface position indicates new snow accumulation. 320 

 321 
The results show substantial variability in initial snow depth, magnitude and timing of surface melt, and 322 

snow accumulation. Mean initial snow depths varied between networks by up to 26% (0.23 m at R vs. 0.31 m at L 323 

and P). Within the networks, initial snow depth variability ranged from 26% at network R to 42% at network L. 324 

 325 
Table 2: ARCSIX summary conditions 326 

Network 

name 

Duration Initial ice 

thickness 

(m) 

Mean initial 

snow depth ± 

standard 

deviation (m) 

Mean ice 

surface 

melt (m) 

Mean 

combined ice 

equivalent 

surface melt 

(m) 

Site description 
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2024L 29 April–1 

November, 

2024 

1.96 0.31 ± 0.13 0.23 ± 

0.11 

0.33 ± 0.08 Level multiyear 

ice (MYI) floe. 

Potential 

hummocks which 

snow has filled, 

rendering a 

smooth surface.  

2024O 5 May–1 

June, 2024 

1.72 0.29 ± 0.09 ~ ~ Large MYI or SYI 

pan with relatively 

level surface. May 

have experienced 

little surface melt. 

2024P 6 May, 2024–

3 January, 

2025a 

2.16 0.31 ± 0.10 0.20 ± 

0.06 

0.31 ± 0.05 Hummocky MYI 

floe in ridged area. 

Floe too thick to 

drill in some 

places (> 4 m). 

2024R 4 May–25 

November, 

2024 

2.40 0.23 ± 0.06 0.23 ± 

0.11 

0.30 ± 0.11 Hummocky MYI 

floe.  

aFour nodes from network P were still reporting as of 3 January, 2025. 327 
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 328 
Figure 8: Box-and-whisker time series of surface position at four SnoTATOS networks. Each box-and-329 
whisker shows the spatial distribution of the ten-day-average surface position for a given network. The lower 330 
and upper edge of each box show the first and third quartiles, the bar in the box shows the median, and the 331 
whiskers indicate the minimum and maximum non-outlier values. Outliers are shown as open blue circles, 332 
and are defined as more than 1.5 times the interquartile range lesser or greater than the first and third quartiles, 333 
respectively. The small, dotted markers and interpolated line show the spatial mean for each ten-day bin. The 334 
square, grey markers indicate the sample size (number of nodes) included in the distribution at each time 335 
step, with a separate Y-axis shown on the right of each pane. 336 
 337 

We computed the ice equivalent snow melt (snow–ice equivalent; SIE) using Eq. 1: 338 

𝐻sie = 𝜌s/𝜌i ∗ 𝐻snow ,         (1) 339 

where 𝜌i is the density of sea ice (0.9 g cm-3, Perovich et al., 2003), 𝜌s is the density of snow (0.3 g cm-3, Sturm et 340 

al., 2002), 𝐻snow is the observed snow melt, and 𝐻sie is the SIE melt. We combined 𝐻sie with the observed ice 341 

surface melt to determine the total ice equivalent surface melt for each station. Average ice-equivalent melt was 0.33 342 

m at L, 0.31 m at P and 0.30 m at R, indicating very similar net surface melt across the region. Net ice-only surface 343 

melts were also quite similar with 0.23 m at L, 0.20 m at P and 0.23 m at R. The network with the deepest initial 344 

snow depth (P) also had the smallest ice melt, presumably because deeper snow increased albedo and physically 345 
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protected the ice, delaying surface melt onset (Fig. 9). Compared to variability between regions or years within the 346 

Arctic (e.g., Perovich (2014) or Planck (2022)), however, these variations in mean behavior are quite small. 347 

A key note here is that variability in surface melt (both ice surface melt and combined equivalent melt) was 348 

relatively low between networks, the largest variability being a 13% difference in ice surface melt between R and P 349 

(R higher), and a 9% difference in combined equivalent melt between L and R (L higher). However, melt variability 350 

within networks was higher, at 31–46% for ice surface melt, and 15–38% for combined equivalent melt. This 351 

suggests that networks of this size (on the order of ten nodes) may be adequate for accurately capturing the local 352 

variability of surface melt. 353 

Snow accumulation began soon after the conclusion of surface melt, in early to mid August. Network L 354 

saw 0.08 m snow accumulation by 16 October, then a decrease to 0.04 m snow depth by 26 October, when the 355 

network ceased reporting. The air temperature record suggests that the decrease was caused by wind removal rather 356 

than surface melt. Network R saw 0.14 m of new snow by 15 November, when it also ceased returning data. As of 3 357 

January, 2025, network P has seen a mean snow accumulation of 0.39 m and a range of 0.12–0.80 m. 358 

 359 
Figure 9: Box-and-whisker plot showing the distribution of ice surface melt onset and surface melt end 360 
dates. Ice surface melt onset is shown in orange, and surface melt end is shown in blue for the nodes within 361 
each network. Network 2024O is excluded since the network stopped reporting before surface melt onset. 362 
“All” shows the combined distribution of all active nodes in 2024R, 2024P, and 2024L. 363 
 364 
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 Despite relatively small geographical separation, snow accumulation varied significantly between 365 

networks. We compare the snow accumulation at networks L, P, and R during the period from freezeup around early 366 

August, through 26 October, when network L failed. The networks were deployed within 113 km of each other, and 367 

by 26 October, networks L and P were still within 98 km of each other. Meanwhile, network R drifted to 306 km 368 

from network L, and 398 km from network P. During this period, 0.04 m of snow accumulated at network L, 0.25 m 369 

of snow accumulated at network P, and 0.14 m of snow accumulated at network R. This indicates a roughly 84% 370 

difference in snow accumulation between networks L and P in that period, despite their relative proximity.  371 

Further, the variability of snow accumulation within each network is evident in the widening box-and-372 

whisker distributions in Fig. 8. This variability increases as accumulation continues through the winter at network R 373 

and, in particular, at network P. The attrition of nodes at network P during this period prompted us to consider 374 

whether the increase in the interquartile range (IQR) is an artifact of the declining sampling size or a real signal. 375 

Because the increase in IQR occurs primarily during a period when the sample size is constant (n = 4), we suggest 376 

that the increase in the IQR is a real signal that is amplified by the small sample size. 377 

Finally, the range of snow depth on 26 October was approximately equal to the range at time of installation 378 

for network L, slightly higher at network R, and substantially higher at network P. This is potentially the result of 379 

both interannual as well as spatial variability (due to ice advection). As many studies have confirmed, snow depth on 380 

sea ice is highly variable; this case study suggests that SnoTATOS can observe that variability, though the number 381 

of nodes needed to fully constrain it is unclear. In order to facilitate efficient use of resources and enable accurate, 382 

error-constrained data collection, we recommend further research into the number and arrangement of sampling 383 

points needed to measure the spatial and temporal variability of the snow cover on Arctic sea ice. 384 

4 Conclusions 385 

This work documents the development, testing, and a case study deployment of SnoTATOS, a new autonomous 386 

system for collecting distributed, in situ snow depth measurements on sea ice. Responding to community calls for 387 

the widespread snow depth measurements that are needed to understand the changing Arctic sea ice system, and 388 

recognizing the lack of suitable, affordable tools, we set out to create a low-cost, easy-to-use system to fill the gap. 389 

The resulting radio-networked snow depth measurement stations are only 5% of the cost and 7% of the weight of 390 

existing systems, with identical measurement functionality. A case study deployment of four SnoTATOS networks 391 

in the Lincoln Sea in April 2024 1) validates the functionality of SnoTATOS, including the system’s ease of 392 

transport, rapid installation, and collection of high-quality, in situ snow depth and surface melt measurements, 2) 393 

demonstrates the substantial spatial and temporal variability in snow accumulation and ice surface melt at the floe 394 

scale, and 3) suggests that even relatively small SnoTATOS networks (on the order of 10 nodes) are capable of 395 

capturing that variability. Based on the last finding, we recommend focused studies to determine the number and 396 

placement of autonomous sampling stations needed to accurately capture snow accumulation, depth, and surface 397 

melt variability. 398 

Of the forty nodes installed in April 2024, four were still reporting by the beginning of January 2025. The 399 

character of the failures suggests most (26) failed by physical damage. High attrition rates resulting from ice 400 
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dynamics and wildlife are a reality for autonomous instruments installed on Arctic sea ice. This, in addition to a 401 

need for more comprehensive observations of Arctic variability, is a strong motivation to transition towards the use 402 

of large, redundant networks of lightweight, inexpensive sensing stations, an approach also recommended by Lee et 403 

al. (2022) and Webster et al. (2022). In its current permutation, SnoTATOS can accommodate additional sensors 404 

such as barometric pressure or temperature sensors. We plan to build on this technology to create a modular “polar 405 

Internet of Things” sensing system capable of hosting plug-and-play sensors, making radio-networked distributed 406 

sensing more accessible for the polar regions. We anticipate that SnoTATOS will also prove useful for monitoring 407 

snow accumulation and ice surface melt in alpine, glacier, and tundra environments. 408 

Appendix A: sensing unit components and power test 409 

 410 
Figure A1: Schematic block diagram of SnoTATOS sensing unit electronics. The figure shows the 411 
major electronics components of the SnoTATOS sensing unit. Blue blocks indicate external power and 412 
clock components for the MCU, which is shown in orange. Yellow blocks indicate I/O modules that the 413 
MCU interacts with for collecting and transmitting data. 414 
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 415 
Figure A2: Time-resolved power demand for the node and server during pre-deployment bench 416 
testing. Panel (a.) shows the power demand during the various stages of the duty cycle for a node with 𝑉s =417 
2.4 V. Panel (b.) shows the power demand during the various stages of the duty cycle for the server with 418 
𝑉s = 18 V. 419 

Appendix B: mesh network implementation 420 

The node-side logical flow for mesh network packet handling is shown in Fig. B1. During a data transmission 421 

attempt, a node will first attempt to unicast the message directly to the server. If an acknowledgment (ACK) is 422 

received, then the message has been transmitted successfully and the attempt ends. If an ACK is not received within 423 

a timeout period, the node then reattempts transmission, either repeating a unicast if the last ACK’d message was 424 

not a broadcast, or progressing directly to broadcast attempts if the node knows that the last message it successfully 425 

transmitted to the server was a broadcast message. If an ACK is not received within the allotted number of 426 

reattempts, or the timeout period expires, then the transmission attempt has failed. The attempt ends, and it is 427 

counted towards the number of allowable failed transmissions before the node is prompted to resync with the server. 428 
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 429 
Figure B1: Logical flow diagram for node-side mesh network packet handling. Panel (a.) shows the 430 
logical flow for handling a mesh network message transmission attempt. Panel (b.) shows the logical flow 431 
for handling a received mesh network message. 432 
 433 

In the mesh network model, whenever a node receives a message, it first checks whether it is a broadcast 434 

message. If it is not a broadcast message, it is implicitly a unicast ACK message from the server. The node confirms 435 

that it is an ACK message and that it is addressed to itself, and if so, records the acknowledgement. If it is a 436 

broadcast message (either from the server or via a peer), and it is not a message that it has already received, the node 437 

will first note the message ID, then process the message contents. If it is addressed to itself, it is implicitly a 438 
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broadcast ACK message originating from the server (likely received via a peer). If the node confirms that it is an 439 

ACK message with its own address, it records the acknowledgement. If it is not addressed to itself, it could be a data 440 

message originating from a peer and addressed to the server; an ACK message originating from the server and 441 

addressed to a peer, or a sync message originating from the server and addressed to the entire network. In the first 442 

two cases, the node rebroadcasts the message without further processing. In the latter (sync) case, the node first sets 443 

its synchronization flag, then rebroadcasts the message to the network. 444 

 In a mesh topology network, the server follows the logical flow shown in Fig. B2. First, the server checks 445 

to see if the received message is a broadcast or unicast message. If it is unicast, the server returns a unicast ACK. If 446 

it is a broadcast message, and if it is not a repeat message, the server broadcasts an ACK message addressed to the 447 

originating node. 448 

 449 

 450 
Figure B2: Logical flow diagram for server-side mesh network packet handling. The logical flow for 451 
receiving a mesh network message and returning an acknowledgement is shown. 452 
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